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ABSTRACT

Objective: Deep learning (DL) has been applied in proofs of concept across biomedical imaging, including

across modalities and medical specialties. Labeled data are critical to training and testing DL models, but

human expert labelers are limited. In addition, DL traditionally requires copious training data, which is computa-

tionally expensive to process and iterate over. Consequently, it is useful to prioritize using those images that

are most likely to improve a model’s performance, a practice known as instance selection. The challenge is

determining how best to prioritize. It is natural to prefer straightforward, robust, quantitative metrics as the

basis for prioritization for instance selection. However, in current practice, such metrics are not tailored to, and

almost never used for, image datasets.

Materials and Methods: To address this problem, we introduce ENRICH—Eliminate Noise and Redundancy for

Imaging Challenges—a customizable method that prioritizes images based on how much diversity each image

adds to the training set.

Results: First, we show that medical datasets are special in that in general each image adds less diversity than

in nonmedical datasets. Next, we demonstrate that ENRICH achieves nearly maximal performance on classifica-

tion and segmentation tasks on several medical image datasets using only a fraction of the available images

and without up-front data labeling. ENRICH outperforms random image selection, the negative control. Finally,

we show that ENRICH can also be used to identify errors and outliers in imaging datasets.

Conclusions: ENRICH is a simple, computationally efficient method for prioritizing images for expert labeling

and use in DL.
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INTRODUCTION

Deep learning (DL) models can classify images by disease or by the

structure(s) they contain. They can also segment, track, and measure

substructures within images.1–17 DL thus has great promise for

helping meet the overwhelming need for accurate, reliable, and scal-

able image interpretation that currently exists in medicine due to a

near-universal shortage of trained human experts.5,6,18–21 However,

the data-hungry nature of DL model training threatens to hamper its
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effective use for medical imaging. First, the large amount of data

required creates a costly and time-consuming labeling bottleneck for

clinical experts.3 (This is in contrast to labeling in nonmedical fields,

which usually focuses on everyday objects and therefore can be per-

formed more quickly and inexpensively by laypeople via crowd-

sourcing.22) Various unsupervised methods can help mitigate the

labeling burden but cannot eliminate it, since experts are still needed

to label test datasets in order to benchmark performance on high-

stakes medical tasks. Second, large amounts of training data increase

training times, slowing iteration during model development, requir-

ing out-of-reach computational resources, or both. While early

proofs of concept have used relatively small imaging datasets, the

skyrocketing volume of medical image data promises to magnify

these challenges.23,24

It has long been recognized that prioritizing the labeling of data

that most benefit model performance, a practice known as instance

selection, as opposed to random data, can be helpful for machine

learning.25,26 Instance selection methods generally balance some

measure of the representativeness of a datapoint (instance) with

some measure of how much that instance will add to the diversity of

the resulting training set.25 In contrast to active learning,27,28 which

requires iterative training of DL models to identify additional instan-

ces to include, instance selection algorithms are used once up front.

Most work on instance selection has focused on nonimaging data

and preceded recent developments in DL. In addition, instance selec-

tion methods described to date often require prior knowledge of the

instance label and so would not reduce the data labeling burden.

Therefore, how best to use instance selection for images, and how

best to curate large image datasets in a label-free approach, are open

questions.

Medical images differ from images of everyday objects in ways

that we hypothesized could be leveraged for a new instance selection

approach. Unlike images of everyday objects, which typically exhibit

multiple lighting conditions and are captured at a range of distances,

angles, and contexts, medical images are often more uniform in

these respects, a result of standardization of imaging protocols for

patient care. Images from a particular medical domain often have

similar subject matter (eg, the heart in cardiology, the retina in oph-

thalmology), pose (standard views), background (black), noise,

lighting, and color. In the case of computed tomography, magnetic

resonance imaging, ultrasound, and other common imaging modal-

ities, image frames are often captured consecutively, resulting in

similarity among images. For these reasons, we hypothesize that

standardization in medical imaging creates greater redundancy in

medical training data than in commonly used nonmedical datasets.

We therefore propose that simply prioritizing nonredundant images

is an efficient means of instance selection for DL in medical imaging.

As a test of this understanding, here we present a method called

ENRICH: Eliminating Noise and Redundancy for Imaging Chal-

lenges. It consists of two main steps. First, a similarity metric is cal-

culated for all pairs of images in a given dataset, forming a matrix of

pairwise-similarity values. Second, an algorithm operates on the

matrix to identify those images that are least similar to images in an

existing seed training set and thereby hypothetically most informa-

tive. The result is a meaningful decrease in the redundancy and size

of the resulting training set without requiring up-front labeling,

which can be laborious. We demonstrate proof of concept on classi-

fication and segmentation tasks on two large, well characterized

medical datasets: ECHO-F,3 which consists of fetal echocardio-

grams, and OCT,29 which consists of adult retinal optical coherence

tomography images. We also demonstrate the special nature of

medical image datasets, showing differences in their pairwise simi-

larities compared to STL10, a standard nonmedical image dataset

used for various DL applications.30

MATERIALS AND METHODS

Datasets, tasks, and benchmarks
We searched for available datasets meeting the following criteria:

minimum image size of 80 � 80 pixels; minimum image number

10 000 (classification) or 1000 (segmentation); not trivially simple

(eg, MNIST); multiple labeled classes available; representing both

nonmedical images as well as medical images of different anatomic

structures, different imaging modalities, and different data structure

(still images vs videos). Most cleaned, publicly available datasets

have previously been cropped to square as part of their preparation.

For consistency, where we encountered datasets where images were

not already square, we removed any white edges from those images,

found the center of the remining region, and cropped to a square

region symmetric around it. Training and test sets are described

below and in Table 1.

ECHO-F

ECHO-F consists of fetal echocardiogram images.3 The binary clas-

sification task included the fetal axial four-chamber (A4C) view and

the nontarget (NT) view. The multiclass task included the A4C and

NT views as well as the fetal three-vessel view (3VV). In ultrasound,

one or more clips are acquired per patient; each clip consists of one

to several hundred consecutive image frames. Training and test sets

were divided by patient identifier (ID) and were disjoint from each

other.

ECHO-F-SEG

ECHO-F-SEG consists of a subset of A4C images from ECHO-F.

ECHO-F-SEG was used for multiclass segmentation with five

classes: left ventricle, right ventricle, left atrium, right atrium, and

background. Notably, ECHO-F-SEG had already been curated

informally, in that only certain frames from each video clip were

labeled.

OCT

OCT consists of adult retinal optical coherence tomography

images.29 Binary classification was between normal retina (NL) and

choroidal neovascularization (CNV). The multiclass task included

NL and CNV as well as drusen and diabetic macular edema. The

train/test split of the dataset was adjusted from the authors’ original

description: instead of 250 images per lesion in the test set, we cre-

ated disjoint train/test sets as we did for ECHO-F, split by patient

ID, and increased the total size of the binary test set from 500

images to 17 638 images and the multiclass test set from 1000

images to 26 908 images to make the tests more difficult.

STL10

STL10 consists of images of animals and vehicles.30 The binary clas-

sification task included images of airplanes (AIR) and trucks

(TRUCK). The multiclass task included AIR, TRUCK, and ships/

boats (SHIP).

Image processing
Grayscale conversion was done using Python3’s OpenCV package.

Image resizing was done using Python3’s Scikit-Image package.
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ECHO-F

ECHO-F images were originally 300 � 400 pixel grayscale. For

autoencoder input, the original images were cropped to square and

resized to 64 � 64. For classification-model training and testing,

images were cropped and resized to 80 � 80. For segmentation-

model training and testing, original images were cropped to 272 �
272.

OCT

OCT images were originally grayscale and varied in pixel dimen-

sion. This dataset was standardized to correct region-of-interest mis-

alignment and remove white-edge artifacts (discovered, in fact, by

ENRICH). First, white sections at image edges were removed as

above, then images underwent a cropping and resizing as above to

allow images to be used with the autoencoder described.

STL10

STL10 images were originally 96 � 96 and converted to grayscale to

for ease of comparison with the medical image datasets and resized

as above.

Embeddings
The bottleneck layer of a disentangled variational autoencoder (b-

VAE) was used to compress each image into a 128-element vector

embedding. The b-VAE used was based on the architecture as

described previously except for the dimension of the embedding.31

The b-VAE was trained on a subset of 5000 images from the entire

ECHO-F training dataset as previously described,3 using combined

loss (reconstruction loss and Kullback-Leibler divergence) and

standard stopping conditions.

Pairwise image similarities
For each dataset, a matrix of pairwise image similarities was calcu-

lated. The similarity between two image embeddings was defined as

the cosine similarity (the complement of the cosine distance)

between each embedding, resulting in pairwise similarities ranging

from 0 for highly dissimilar images to 1 for identical images.

Ranking algorithm
For each DL task, an initial subset of images was chosen at random.

For each image i in the remaining dataset, the maximum similarity

to each image j in the training set, maxj(zij), was read from the simi-

larity matrix, and the image i with the smallest maxj(zij) was added

to the training set (ie, argmini(maxj(zij))). This step was iterated to

grow the training set, and the quality of the training set was assessed

at specific sizes by training a model and measuring its performance

(below). The ranking algorithm was blind to class label. For statisti-

cal confidence, the ranking algorithm, including choice of the initial

subset, was repeated three times for each task (“biological” repli-

cates), and 10 models were trained on each resulting training

set (technical replicates). Training subsets are summarized in

Tables 2–4.

Model training
Resnet and U-net architectures were used to train classification and

segmentation models, respectively, as previously described.3 Data

augmentation was used for the segmentation task as previously

described3 but not for the classification tasks. Experiments for each

dataset used the same model parameters throughout.

Human labeling time estimates
Human labeling time averaged across n¼4 labelers using several

different labeling platforms was 3 seconds per image for classifica-

tion in ECHO-F and 5 min per image for ECHO-F-SEG

segmentation.

Evaluation metrics
For the binary classification tasks, model performance was assessed

using the area under the receiver operator characteristic curve

(AUCROC). For the multiclass tasks, a per class one-versus-rest

AUCROC was averaged and compared between models. For the

segmentation task, average Jaccard score of the four heart segments

(left ventricle, right ventricle, left atrium, right atrium) was used, as

previously described.3 One-sided t tests were used to compare per-

formance across experiments.

Several datasets contained hierarchical levels of organization,

image < clip < patient. Representativeness of each training subset

by level as applicable was calculated as a percentage of each of these

in overall training set. Class balance was calculated as the effective

number32 form Shannon entropy, that is, exponentiating the Shan-

non entropy of the classes. At each level, class balance was calcu-

lated from the distribution of the number of unique images/clips/

patients in each class.

RESULTS

Dataset diversity plots and the dataset diversity score
We developed a new way to visualize the diversity or redundancy of

a dataset by plotting a cumulative histogram of the values in the sim-

ilarity matrix, resulting in a dataset diversity plot (Figure 1). In such

plots, high-diversity datasets—ones in which the images are very dif-

ferent from each other—will trace out curves to the upper left, while

high-redundancy datasets will trace out curves to the lower right.

The area under the diversity curve ranges from 0 to 1: 0 for datasets

that are completely redundant and 1 for datasets that are maximally

diverse. Thus, we used the area under the diversity curve as a natural

a dataset diversity score, as we introduce and illustrate in Figure 1A.

We created diversity plots and dataset diversity scores for each

Table 1. Overall training and testing datasets

Dataset Class Training Testing

Images Clips Patients Images Clips Patients

ECHO-F 3VV 7159 837 500 890 96 51

A4C 20 378 1495 652 3518 198 80

NT 25 082 2849 281 4365 764 51

Totala 52 619 4687 777 8773 976 89

ECHO-F-SEG A4C 1248 299 186 173 48 20

OCT NL 23 468 — 3193 3015 — 433

CNV 22 696 — 653 14 623 — 267

DME 6994 — 601 4550 — 166

DRU 4144 — 574 4720 — 142

Totala 57 302 — 4221 26 908 — 1254

STL10 AIR 6059 — — 800 — —

TRUCK 4117 — — 800 — —

SHIP 6600 — — 800 — —

Total 16 776 — — 2400 — —

Abbreviations: 3VV: three-vessel view; A4C: apical four-chamber; AIR:

airplane; CNV: choroidal neovascularization; DME: diabetic macular edema;

DRU: drusen; NL: normal; NT: nontarget.
aSome clips and patients may contain more than one class of image.
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Table 2. Select training subsets, ECHO-F

No. images 1000a 3000 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 460

ECHO-F binary

Pct. Images 2 7 11 22 33 44 55 66 77 88 100

No. images A4C (avg 6 sd) 444 6 7 1019 6 7 1533 6 11 2588 6 8 4352 6 22 6531 6 13 9108 6 160 11833 6 18 15260 6 8 20260 6 8 20378 6 0

No. images NT (avg 6 sd) 556 6 7 1981 6 7 3467 6 11 7412 6 8 10648 6 22 13469 6 13 15891 6 160 18167 6 18 19739 6 8 19739 6 8 25082 6 0

No. clips A4C (avg 6 sd) 347 6 16 882 6 21 1319 6 1 1480 6 2 1493 6 1 1495 6 0 1495 6 0 1495 6 0 1495 6 0 1495 6 0 1495 6 0

No. clips NT (avg 6 sd) 424 6 13 1346 6 11 2139 6 9 2741 6 3 2794 6 2 2810 6 1 2817 6 3 2826 6 1 2833 6 1 2833 6 1 2849 6 0

No. clips all classes (avg 6 sd) 770 6 9 2186 6 12 3381 6 7 4109 6 3 4171 6 2 4190 6 1 4197 6 3 4206 6 1 4213 6 1 4213 6 1 4229 6 0

No. patients A4C (avg 6 sd) 266 6 14 502 6 8 630 6 1 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0

No. patients NT (avg 6 sd) 104 6 1 222 6 6 269 6 1 281 6 1 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0

No. patients all classes (avg 6 sd) 337 6 10 592 6 9 697 6 2 713 6 0 713 6 0 713 6 0 713 6 0 713 6 0 713 6 0 713 6 0 713 6 0

No. images 1000a 3000 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 52 619

ECHO-F multiclass

Pct. images 2 6 10 19 29 38 48 57 67 76 100

No. images 3VV (avg 6 sd) 139 6 2 461 6 17 742 6 7 1174 6 2 1728 6 16 2391 6 6 3899 6 8 3899 6 8 4788 6 1 6937 6 13 7159 6 0

No. images A4C (avg 6 sd) 381 6 6 847 6 17 1312 6 4 2306 6 8 3666 6 13 5976 6 28 7388 6 5 10593 6 33 12993 6 25 13244 6 28 20378 6 0

No. images NT (avg 6 sd) 480 6 6 1692 6 7 2946 6 4 6520 6 9 9606 6 14 11633 6 25 13713 6 9 15508 6 26 17219 6 24 19819 6 18 25082 6 0

No. clips 3VV (avg 6 sd) 118 6 6 423 6 9 676 6 3 832 6 1 836 6 0 837 6 1 837 6 0 837 6 0 837 6 0 837 6 0 837 6 0

No. clips A4C (avg 6 sd) 307 6 3 741 6 15 1155 6 2 1476 6 2 1489 6 2 1494 6 1 1495 6 1 1495 6 1 1495 6 0 1495 6 0 1495 6 0

No. clips NT (avg 6 sd) 378 6 5 1181 6 11 1907 6 5 2697 6 6 2783 6 2 2798 6 2 2809 6 1 2817 6 1 2820 6 1 2830 6 0 2849 6 0

No. clips all classes (avg 6 sd) 792 6 8 2242 6 10 3494 6 5 4523 6 6 4618 6 1 4635 6 0 4647 6 1 4655 6 1 4658 6 0 4668 6 0 4687 6 0

No. patients 3VV (avg 6 sd) 103 6 8 313 6 5 444 6 6 500 6 0 500 6 0 500 6 0 500 6 0 500 6 0 500 6 0 500 6 0 500 6 0

No. patients A4C (avg 6 sd) 246 6 5 447 6 10 588 6 3 652 6 1 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0 652 6 0

No. patients NT (avg 6 sd) 98 6 9 206 6 2 251 6 1 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0 281 6 0

No. patients all classes (avg 6 sd) 371 6 7 629 6 5 746 6 3 777 6 0 777 6 0 777 6 0 777 6 0 777 6 0 777 6 0 777 6 0 777 6 0

No. images 200a 300 400 600 800 1000 1050 1100 1150 1200 1248

ECHO-F-SEG

Pct. images 16 24 32 48 64 80 84 88 92 96 100

No. images A4C (avg 6 sd) 200 6 0 300 6 0 400 6 0 600 6 0 800 6 0 1000 6 0 1050 6 0 1100 6 0 1150 6 0 1200 6 0 1248 6 0

No. clips A4C (avg 6 sd) 121 6 4 156 6 8 180 6 7 224 6 7 260 6 5 281 6 2 285 6 3 289 6 2 294 6 1 298 6 1 299 6 0

No. patients A4C (avg 6 sd) 100 6 3 121 6 7 130 6 6 151 6 5 167 6 1 178 6 2 179 6 2 181 6 2 184 6 1 185 6 0 186 6 0

Abbreviations: 3VV: three-vessel view; A4C: axial four-chamber; NT: nontarget.
aInitial “seed” subset.
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Table 3. Select training subsets, OCT

No. images 500a 1000 1500 2000 5000 7500 10000 15000 20000 25000 30000 46164

OCT binary
Pct. images 1 2.2 3.2 4.3 10.8 16.2 21.7 32.5 43.3 54.2 65.0 100
No. images CNV (avg 6 sd) 291 6 7 750 6 5 1199 6 2 1649 6 6 4189 6 15 6109 6 27 7870 6 26 10730 6 7 12879 6 10 14399 6 13 15538 6 6 22696 6 0
No. images NORMAL (avg 6 sd) 209 6 7 250 6 5 301 6 2 351 6 6 811 6 15 1391 6 27 2130 6 26 4270 6 7 7121 6 10 10601 6 13 14462 6 6 23468 6 0
No. patients CNV (avg 6 sd) 151 6 4 244 6 6 300 6 10 336 6 8 482 6 3 540 6 5 579 6 3 621 6 2 641 6 1 648 6 1 650 6 1 653 6 0
No. patients NORMAL (avg 6 sd) 198 6 6 231 6 1 266 6 2 300 6 4 571 6 11 837 6 5 1133 6 17 1783 6 6 2337 6 5 2776 6 17 3048 6 2 3193 6 0
No. patients all classes (avg 6 sd) 344 6 9 465 6 6 553 6 11 621 6 10 1011 6 9 1309 6 12 1625 6 20 2268 6 2 2808 6 6 3232 6 20 3494 6 2 3635 6 0

OCT multiclass
Pct. images 0.9 1.7 2.6 3.5 8.7 13.1 17.5 26.2 34.9 43.6 52.4 61.1 69.8 78.5 100

No. images 500a 1000 1500 2000 5000 7500 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000 57 302
No. images CNV (avg 6 sd) 195 6 13 461 6 21 758 6 15 1067 6 4 3025 6 14 4592 6 10 6096 6 22 8785 6 17 10969 6 22 12664 6 2 13981 6 8 15005 6 6 15927 6 4 17003 6 10 22696 6 0
No. images DME (avg 6 sd) 54 6 13 269 6 20 442 6 10 601 6 12 1361 6 11 1901 6 6 2410 6 12 3256 6 12 3930 6 19 4499 6 19 4937 6 10 5290 6 3 5605 6 6 5907 6 3 6994 6 0
No. images DRUSEN (avg 6 sd) 36 6 4 36 6 4 39 6 3 47 6 3 88 6 3 139 6 7 210 6 3 452 6 9 799 6 20 1272 6 25 1787 6 5 2302 6 18 2768 6 13 3199 6 5 4144 6 0
No. images NORMAL (avg 6 sd) 215 6 4 234 6 6 260 6 9 286 6 12 526 6 12 868 6 8 1284 6 18 2507 6 20 4302 6 10 6565 6 11 9295 6 9 12402 6 11 15700 6 13 18891 6 15 23468 6 0
No. patients CNV (avg 6 sd) 126 6 8 191 6 7 245 6 4 284 6 5 425 6 5 493 6 8 539 6 6 593 6 2 623 6 1 639 6 5 646 6 3 649 6 1 652 6 1 652 6 0 653 6 0
No. patients DME (avg 6 sd) 45 6 10 121 6 6 164 6 8 200 6 5 317 6 4 376 6 5 433 6 2 489 6 0 528 6 4 561 6 0 578 6 2 592 6 2 597 6 1 600 6 1 601 6 0
No. patients DRUSEN (avg 6 sd) 34 6 3 34 6 3 37 6 1 40 6 3 54 6 1 73 6 7 103 6 5 194 6 6 289 6 8 387 6 4 452 6 4 501 6 4 540 6 6 567 6 2 574 6 0
No. patients NORMAL (avg 6 sd) 202 6 5 218 6 6 238 6 9 256 6 13 416 6 12 602 6 7 804 6 11 1273 6 16 1791 6 35 2255 6 18 2635 6 15 2909 6 11 3088 6 11 3181 6 3 3193 6 0
No. patients all classes (avg 6 sd) 392 6 8 538 6 6 649 6 3 737 6 9 1114 6 11 1401 6 10 1675 6 11 2223 6 14 2783 6 26 3277 6 10 3665 6 10 3938 6 13 4118 6 11 4210 6 2 4221 6 0

Abbreviations: CNV: choroidal neovascularization; DME: diabetic macular edema; DRU: drusen; NL: normal.
aInitial “seed” subset.

Table 4. Select training subsets, STL10

No. images 500a 1000 2000 3000 5000 7000 9000 10 176

STL10 binary

Pct. images 4.9 9.8 19.7 29.5 49.1 68.8 88.4 100

No. images AIRPLANE (avg 6 sd) 299 6 6 407 6 5 632 6 7 946 6 4 1887 6 3 3457 6 1 5362 6 1 6059 6 0

No. images TRUCK (avg 6 sd) 201 6 6 593 6 5 1368 6 7 2054 6 4 3113 6 3 3543 6 1 3638 6 1 4117 6 0

No. images 500a 1000 2000 3000 5000 7000 9000 11 000 13 000 16 776

STL10 multiclass

Pct. images 3 6 11.9 17.9 29.8 41.7 53.6 65.6 77.5 100

No. images AIRPLANE (avg 6 sd) 183 6 14 260 6 15 438 6 7 623 6 11 1087 6 16 1706 6 8 2436 6 33 3323 6 10 4290 6 10 6059 6 0

No. images SHIP (avg 6 sd) 194 6 7 329 6 8 566 6 21 857 6 8 1531 6 18 2304 6 14 3215 6 32 4160 6 10 5109 6 10 4117 6 0

No. images TRUCK (avg 6 sd) 123 6 9 411 6 14 996 6 16 1520 6 3 2381 6 3 2990 6 7 3349 6 6 3517 6 4 3601 6 1 6600 6 0

aInitial “seed” subset.
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dataset in our study (Figure 1B). These plots revealed significant

redundancy in the medical image datasets ECHO-F and OCT

(Figure 1B, blue and green), and higher redundancy in these medical

datasets than in the nonmedical STL10 (Figure 1B, yellow).

Image redundancy in medical datasets
Our prior work suggested that medical image datasets are often

quite redundant compared to nonmedical datasets3 and that such

redundancy is not confined to images from a given patient or video

clip but instead is distributed across the dataset. To test this hypoth-

esis, for each dataset we calculated the maximum pairwise similarity

for each image, with a similarity measure based on the cosine simi-

larity between b-VAE embeddings (Materials and Methods). Sup-

porting this hypothesis, we found that the majority of ECHO-F

classification images had a maximum similarity greater than 0.9:

most images had at least one other image in the dataset to which

they were at least 90% similar (Figure 1B). The OCT dataset

exhibited the same phenomenon, with roughly half of the images

having a maximum pairwise similarity greater than 0.8. In contrast,

most images in the nonmedical STL10 dataset had a maximum simi-

larity less than 0.4 (Figure 1B).

Comparing ENRICH-curated training subsets versus

control
ENRICH involves ranking images based on their similarity to each

other and preferentially choosing the most unique—that is, lowest

similarity—images for inclusion in the training set (Materials and

Methods). Labeling is not required. For each dataset, we compared

the performance of models trained on ENRICHed subsets of the

dataset to those trained on control subsets, that is, subsets created

by random sampling of the full dataset. We further compared the

performance of both ENRICHed and control subsets of different

sizes to the performance of models trained on the full training set,
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Figure 1. Similarity in imaging datasets and experimental approach. A, Schematic of the dataset diversity plot, a cumulative density plot of maximum pairwise

similarities. Dataset diversity scores are indicated. B, Dataset diversity plots and scores for ECHO-F, OCT, STL10, and ECHO-F-SEG datasets. Also, included are

the total images available for the ECHO-F segmentation task, ECHO-F-SEG-ALL. C, Pairwise image similarities in a handful of images drawn from OCT, STL10,

and ECHO-F. Red-, orange-, and yellow-bordered squares indicate similarities within the OCT, STL, and ECHO datasets, respectively. D, Schematic summary of

ENRICH. From all available images in a dataset, an initial training set is chosen at random. The remaining images comprise a candidate pool of images from

which additional images can be selected. A matrix of pairwise image similarities (step 1 of ENRICH) is constructed. From this matrix, an algorithm is used to

choose additional images to add to the initial training set; this is step 2 of ENRICH. This process is repeated, iteratively adding images to an initial subset.
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that is, all available training images, as the gold standard. For each

dataset and task, we recorded whether and at what size ENRICHed

subsets outperformed control subsets, as well as the minimum size

at which ENRICHed subsets performed indistinguishably from the

gold standard (full dataset). We tested binary and multiclass classifi-

cation as well as segmentation, with replicates for statistical confi-

dence (Figure 2).

ENRICH achieved gold-standard performance with sub-

stantially smaller training sets and outperformed

unbiased selection
ENRICHed subsets achieved gold-standard performance using train-

ing subsets there were only a fraction of the size of the full training

set (Figure 2). Specifically, ENRICH required only 55% and 48% of

available images for ECHO-F binary and multiclass tasks, respec-

tively (Figure 2). In contrast, random sampling failed to reach this

benchmark at any training set size short of the full dataset. ENRICH

outperformed control on even the smallest subsets, for example,

11% of ECHO-F in the binary classification task, 9.5% of ECHO-F

in multiclassification (P-values <2 � 10�9; Figure 2A and B).

ENRICH discovers dataset structure without labels
Like many medical datasets, ECHO-F has hierarchical structure,

with individual video frames stratified by clip and patient. We found

that ENRICH selected images that represented almost all of the

available patients and video clips even at small subset sizes, signifi-

cantly more so than random sampling (all P-values <1 � 10�4)

(Table 2 and Figure 2A and B). The largest magnitude in those dif-

ferences were evident in the smallest training subsets that first

showed performance gains over random selection.

ENRICH achieves class balance without labels
Class balance was measured as the effective number32–35 of classes

at the image, clip, and patient levels (Figure 2). Effective number is a

mathematically rigorous standard that takes similarities and fre-

quencies into account. (For example, if the frequencies of two

classes in a toy dataset were highly imbalanced at 0.99 and 0.01, the

effective number of classes will be close to one, since in effect, only

the first class is represented.32 In such a case, one would want to use

some class balancing technique on the data to bring the effective

number of classes closer to two.) Using Shannon entropy (see Mate-

rials and Methods), we calculated the effective number of classes

represented by the images, clips, and patients in the full training set

and in each ENRICHed and control subset.

The number of images in the full training set for ECHO-F were

nearly equally balanced between classes, and indeed the effective

number of classes in the binary classification task is approximately

two (1.99). The effective number of classes at the clip and patient

levels in the full training set are 1.88 and 1.57, respectively. While

random sampling saw image-level effective size stay constant and

clip- and patient-level effective sizes decrease approximately line-

arly, ENRICHed training sets were significantly less diverse at

image, clip, and image levels, most notably at the 11% and 22%

training subsets where ENRICH first pulled ahead in binary classifi-

cation performance (Figure 2A; P-values all <5 � 10�4). Similar

behavior was present in the 9.5% subset in the multiclassification

task (Figure 2B; all P-values <.001). For both tasks, imbalance

favored the NT class (Table 2), which clinically is felt to be more

diverse, since it can contain any nonheart image, while the A4C class

contains only A4C images of the heart. Thus, ENRICH selectively

enriched training sets for the more diverse class, resulting in better

performance, as opposed to blindly maintaining class balance.

Performance on additional datasets
Model test performance on OCT binary classification achieved a

mean AUCROC of 0.99 (62.24 � 10�5) when trained on the full

training dataset. ENRICH outperformed control training sets at just

2% of all OCT images (mean AUCROC 0.995 vs 0.993, P-value

9.98 � 10�6). Only 32.5% of the training dataset was needed to

achieve gold-standard performance when training images were

chosen using ENRICH versus 41% for the control. The OCT data-

set structure had images and patients, but not clips (Table 1). At a

patient level, the effective number of classes is only 1.5 due to more

patients in the NORMAL class than in the CNV class. For OCT, the

effective number of classes patients represented in ENRICHed sub-

sets was higher even as control subsets had a higher effective number

of classes among images (Figure 2D). As Table 2 shows, this is

because ENRICH selected fewer frames and patients from the over-

represented NORMAL class as it chose training subsets that outper-

formed control sets. When trained on the full training dataset, OCT

multiclass performance achieved an AUCROC of 0.99 6 2 � 10�4.

Neither ENRICHed nor control subsets were able to achieve this

benchmark. ENRICH outperformed control subsets at just 6% of

all OCT images (P-value 2.49 � 10�9), with similar findings with

representativeness and effective number of classes as in the binary

task (Figure 2E and Table 2).

ECHO-F-SEG multiclass segmentation
The ECHO-F-SEG dataset contains only two images per clip—an

intuitive decision to economize on labeling. We evaluated training

subsets chosen via ENRICH on multiclass segmentation. Using all

available training data (Table 1), average Jaccard index was 0.68.

With 80% of the training data, ENRICH achieved an average Jac-

card of 0.66 (Figure 2C). ENRICH did not statistically significantly

outperform random selection. Consistent with this, clip-level and

patient-level representativeness was statistically indistinguishable

between training subsets curated by ENRICH versus not. (Effective

number of classes in this dataset is 1 by definition.)

Model test performance on binary classification in STL10

achieved a mean AUCROC of 0.99 6 2.04 � 10�4 when trained on

the full training dataset. In contrast to the medical datasets above,

initially, control subsets narrowly but statistically outperformed

ENRICH (at 20%; P-value 6 � 10�4). At 50% of all STL10 images,

the trend reversed, and ENRICH narrowly outperformed control

subsets (P-value 5 � 10�6) and continued to outperform it as sample

size increased. Ninety percent of the total dataset was needed in

order to achieve gold-standard performance (P-value .42;

Figure 2F). We were not able to achieve the same benchmark with-

out ENRICH. For multiclass classification with STL10, model test

performance achieved a mean AUCROC of 0.99 (65.57 � 10�5)

when trained on the full training dataset. Neither subset selection

method, ENRICH nor control, was able to achieve the same bench-

mark. ENRICH was outperformed except at 30% and 40% of total,

at which sizes performance was indistinguishable. For both binary

and multiclass tasks, representativeness and class balance for STL10

were only present at the image level (Figure 2F and G).

Potential time savings in labeling
W estimated the time required to label all the images in ECHO-F for

classification and ECHO-F-SEG for segmentation tasks, from
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Figure 2. Performance of ENRICHed training datasets compared to randomly selected training datasets. (A) ECHO-F binary, (B) ECHO-F multiclass, (C) ECHO-F-

SEG segmentation, (D) OCT binary, (E) OCT multiclass, (F) STL10 binary, and (G) STL10 multiclass. Each panel shows test performance on top, representativeness

of images in the middle, and effective class size on the bottom. Performance testing, top: from a common initial random starting dataset (gray), additional images

were added to grow increasingly larger training subsets using ENRICH (blue circle) versus random addition (yellow triangle). Each datapoint represents mean

AUCROC on the test set from 30 replicates; error bars for each datapoint show one standard deviation around the mean. Asterisks for each training data subset

represent statistical differences between ENRICH and random according to the standard convention (ns ¼ P> .05; * ¼ P� .05; ** ¼ P� .01; *** ¼ P� .001;

**** ¼ P� .0001). Empty symbols are statistically indistinguishable from model performance using the full training set (100% of training images; black dot). Rep-

resentativeness, middle: for ENRICH (cool colors, circles) and random selection (warm colors, triangles), for each training subset, the percentage of the total train-

ing set is shown at an image (light blue circle, light yellow triangle), clip (medium blue circle, orange triangle), and patient (dark blue circle, red triangle) levels

where applicable). Effective number of classes, bottom: for ENRICH (cool colors, circles) and random selection (warm colors, triangles), for each training subset,

the effective number of classes is shown at an image (light blue circle, light yellow triangle), clip (medium blue circle, orange triangle), and patient (dark blue

circle, red triangle ) levels where applicable). For representativeness and effective size as well, error bars are shown but are small, and relevant P-values are sum-

marized in the text.
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having measured the time it took to manually label these datasets

for their original use. We compared this to the time that would have

been required for the smallest ENRICHed subsets that achieved

desired performance (55% for classification and 80% for segmenta-

tion). Using an ENRICHed training subset would have conferred a

savings of 38 hours of full-time work, nearly an entire working

week, for an expert labeler, on even this relatively small dataset.

Labeling time on OCT and STL10 is unknown.

ENRICH identifies outliers in image datasets
ENRICH preferentially identifies outlier images, a property that can

be exploited as a preprocessing step to screen for noise in large

image datasets. In the OCT dataset, for example, we found about

10% of images to be similar to each other but different from the rest

of images. Investigating this showed that these images had a white-

space padding artifact (Figure 3) that is important to address (eg, by

testing for segregation by class or by using preprocessing or data

augmentation) in subsequent model training.

Taken together, these data demonstrate that ENRICH can out-

perform random selection, curating a high-performance training

subset that is a fraction of the entire training dataset; and it does so

by recognizing structure in the dataset (images, clips, patients) and

optimizing both representativeness and class balance for this struc-

ture, even though this information is not an explicit part of the cur-

rent implementation of ENRICH. When such structure does not

exist in the dataset—either purposefully removed from medical

image data, or in nonmedical datasets we encountered—the per-

formance of the current implementation of ENRICH was more

modest (Figure 2C, F, and G).

(a)

(b)

(c)

Figure 3. ENRICH aids in screening medical datasets for artifacts. A pairwise-similarity matrix was constructed from a sample of 1000 images in OCT. For each

image in the matrix, a mean of the similarities to all other images (one row of the matrix) was calculated and normalized by the maximum similarity across the

entire matrix. A, A stacked-bar histogram of these values, where images most different from the others are to the left, and most similar images are to the right.

Blue (darker color) indicates images known to have a white-padding artifact; two examples are shown above, with their mean/max ratio as indicated. (B) Stacked

cumulative distribution and (C) cumulative fraction of images in the sample, demonstrating how mean/max ratio of image similarities facilitates identification of

images with artifacts. For example, in this thousand-image sample, about 10% of images have the white-padding artifact.
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DISCUSSION

In DL for medical imaging, investigators generally rely on a crude

metric for dataset quality and content: the number of images in the

dataset. With ENRICH, we offer a mathematically rigorous and

scalable way to look beyond size to dataset content, a practice that

has largely been overlooked or only intuited in DL for medical imag-

ing to date.

Instance selection provides a general strategy for labeling train-

ing datasets efficiently. ENRICH curates medical image datasets

based on pairwise image similarity. Our results show that ENRICH

can be used to identify redundancy in image training datasets. We

further demonstrate that medical datasets such as ECHO-F and

OCT contain significant redundancy. While the canonical teaching

is to split training and test sets by patient, in ECHO-F, most redun-

dancy is at clip level, while in OCT, it appears to be above patient

level (perhaps explaining why such a small portion of training data

was needed to approximate full training set performance). In addi-

tion, there is a diversity to different classes which mere number of

images does not fully describe.

Using ENRICH demonstrated that (1) redundant images do not

aid significantly in DL model training, (2) this behavior is a property

of the image dataset rather than the DL task (binary classification,

multiclassification, and segmentation were tested), (3) image labels

are not needed in order to curate image datasets according to redun-

dancy nor to optimize representativeness and class balance, (4)

images with artifacts can be systematically screened for using pair-

wise similarities, and (5) for some medical datasets, state-of-the-art

performance can be achieved using only a fraction of the full train-

ing dataset.

For scientific rigor, we demonstrated these findings across sev-

eral different image datasets, with several replicates per experiment

totaling over two thousand model trainings. In some of the experi-

ments presented, performance differences were small in magnitude

(but still statistically significant); however, even these can translate

to significant dataset savings. Furthermore, performance improve-

ments of a few percentage points often redefine the state of the art

when it comes to DL architectures.

There are several points in the above experiments worth men-

tion. First, we note that classification-model training demonstrated

here did not include standard data augmentations. This choice was

made in order to remove data augmentation as a potential con-

founding factor in measuring the performance of ENRICH. How-

ever, in the future, data augmentation can be applied to ENRICH

training subsets at the point when they first outperform random

selection (eg, approximately 11% of ECHO-F and 2% of OCT),

requiring even fewer images to meet optimum test performance.

Second, ENRICH was less helpful for the ECHO-F segmentation

task studied here than for the classification tasks. However, for this

task, the ECHO-F-SEG dataset had already been intuitively

ENRICHed, as only a few image frames per clip were chosen. In this

setting, the finding that an additional 20% of the already-intuitively

reduced dataset was not needed to reach full dataset performance is

still an additional gain in efficiency over informal curation and is

another reason that quantitative methods for dataset curation repre-

sent an improvement over simple intuition. When considering that

labeling each image for segmentation took several minutes, and

20% of the training dataset for segmentation comprised 249 image

frames, the potential time savings in labeling even on an already-

intuitively-reduced dataset is significant.

Third, the training/test split for the OCT dataset had to be

adjusted in our study because the original test set (500 and 1000

images in the binary and multiclass datasets respectively) was too

easy to classify. Experiments resulted in perfect test set separability

(AUCROC¼1.0) despite very small training set sizes (<2% total

images available). Even with this adjustment, the OCT test dataset

was still very separable. In theory, the same methods used in this

study to curate training data can be used to curate testing datasets to

provide the most efficient and most representative benchmarks for

generalizability.

Fourth, ENRICH curated datasets without a requirement for up-

front image labeling. This means that one can first curate a small

subset of images, and then invest in labeling only those. Further-

more, a study of the class balance curated by ENRICH in medical

datasets yielded interesting results in that the most efficient data sub-

sets did not have equal numbers of images among each class. This

latter finding suggests that instead of simply balancing classes by

raw number of instances per class, optimal class balance may make

use of other measures that better account for diversity—this is an

exciting avenue for future study.

The implications of our findings for economizing on data in DL

tasks are clear. Perhaps future studies using medical imaging data-

sets might benefit from choosing a small, diverse, ENRICHed subset

of images to label and use for model development. ENRICH may

provide useful metrics on a dataset’s quality and content. While the

choice for image-similarity metric in the current implementation of

ENRICH aided in demonstrating image redundancy as well as noisy

images in the dataset, we anticipate that different choices for simi-

larity metric and curation algorithm will yield additional quality

metrics. Finally, while many data reduction methods are model-

guided: for example in active learning, the model selects the “best”

images for learning,36–38 in an iterative process, ENRICH is data-

guided: the data determine which images are best removed, and it

can be used once. ENRICH may therefore be used in conjunction

with or instead of active learning.

CONCLUSION

In the future, investigating alternative similarity measures and rank-

ing algorithms offers opportunities to test and potentially optimize

the ENRICH framework. For example, other pairwise image-

similarity metrics may prove more informative or simpler to com-

pute. In addition, different algorithm choices as well as code optimi-

zations can be explored to maximize the utility of ENRICH while

minimizing time and computational load. In addition, while we ran

over two thousand experiments on several datasets, testing ENRICH

on still more datasets can only improve its utility. We make our

code available so that others can run ENRICH on their datasets,

both for their own benefit and for advancement of the field.

Quantitative measures of similarity have been shown to add use-

ful insights in other fields.35,39 ENRICH is expected to be a useful

new avenue for decreasing labeling burden and speeding iterative

training and testing of DL models in development.

FUNDING

EC, RoA, RaA, and RiA were supported by the Department of Defense

(W81XWH-19-1-0294) and the National Heart, Lung, and Blood

Institute (NIH R01HL146398). RoA and RaA were supported by the

National Institutes of Allergy and Infectious Diseases (NIH

1088 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/6/1079/7111836 by H
arvard Law

 School Library user on 26 M
ay 2023



R01AI148747-01). RaA and RiA were supported by the Gordon and

Betty Moore Foundation. EC and RiA were supported by the American

Heart Association (17IGMV33870001).

AUTHOR CONTRIBUTIONS

RiA and RaA conceived of the study. Similarity metric, algorithm

design, image preprocessing, and neural-network design and testing

were implemented by EC and RoA with input from RaA and RiA.

All authors contributed to the writing of the manuscript.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY

Code will be made available at https://github.com/ArnaoutLa-

bUCSF/cardioML upon publication. The datasets OCT and STL10

are publicly available at the Mendeley Data repository and the Stan-

ford University Computer Science Department’s webpage, https://

data.mendeley.com/datasets/rscbjbr9sj/2 and https://cs.stanford.edu/

~acoates/stl10/ respectively. Due to patient privacy constraints the

ECHO-F and ECHO-F-SEG datasets cannot be made available to

the public.

REFERENCES

1. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view

classification of echocardiograms using deep learning. NPJ Digit Med

2018; 1.

2. Kornblith AE, Addo N, Dong R, et al. Development and validation of a

deep learning strategy for automated view classification of pediatric

focused assessment with sonography for trauma. J Ultrasound Med 2022;

41 (8): 1915–24.

3. Arnaout R, Curran L, Zhao Y, et al. An ensemble of neural networks pro-

vides expert-level prenatal detection of complex congenital heart disease.

Nat Med 2021; 27 (5): 882–91.

4. Lee G, Fujita H, eds. Deep Learning in Medical Image Analysis: Chal-

lenges and Applications. Switzerland: Springer International Publishing;

2020. doi:10.1007/978-3-030-33128-3.

5. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of

skin cancer with deep neural networks. Nature 2017; 542 (7639): 115–8.

10.1038/nature21056.

6. Gulshan V, Peng L, Coram M, et al. Development and validation of a

deep learning algorithm for detection of diabetic retinopathy in retinal

fundus photographs. JAMA 2016; 316 (22): 2402–10.

7. Xu J, Zhang M, Turk EA, et al. Fetal pose estimation in volumetric MRI

using a 3D convolution neural network. Med Image Comput Comput

Assist Interv 2019; 11767: 403–10.

8. Rhee DJ, Jhingran A, Rigaud B, et al. Automatic contouring system for

cervical cancer using convolutional neural networks. Med Phys 2020; 47

(11): 5648–58.

9. Gjesteby L, Shan H, Yang Q, et al. A dual-stream deep convolutional net-

work for reducing metal streak artifacts in CT images. Phys Med Biol

2019; 64 (23): 235003.

10. Li H, He L, Dudley JA, et al. DeepLiverNet: a deep transfer learning

model for classifying liver stiffness using clinical and T2-weighted mag-

netic resonance imaging data in children and young adults. Pediatr Radiol

2021; 51 (3): 392–402.

11. Anderson BM, Lin EY, Cardenas CE, et al. Automated contouring

of contrast and noncontrast computed tomography liver images

with fully convolutional networks. Adv Radiat Oncol 2021; 6 (1):

100464.

12. Shen Y, Wu N, Phang J, et al. An interpretable classifier for high-

resolution breast cancer screening images utilizing weakly supervised

localization. Med Image Anal 2021; 68: 101908.

13. Shao M, Han S, Carass A, et al. Shortcomings of ventricle segmentation

using deep convolutional networks. Underst Interpret Mach Learn Med

Image Comput Appl (2018) 2018; 11038: 79–86.

14. Kaye EA, Aherne EA, Duzgol C, et al. Accelerating prostate

diffusion-weighted MRI using a guided denoising convolutional neural

network: retrospective feasibility study. Radiol Artif Intell 2020; 2 (5):

e200007.

15. Vidyaratne L, Alam M, Shboul Z, Iftekharuddin KM. Deep learning and

texture-based semantic label fusion for brain tumor segmentation. Proc

SPIE Int Soc Opt Eng 2018; 2018: 105750D.

16. Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardio-

gram interpretation in clinical practice. Circulation 2018; 138 (16):

1623–35.

17. Fan L, et al. Rapid dealiasing of undersampled, non-Cartesian cardiac per-

fusion images using U-net. NMR Biomed 2020; 33: e4239.

18. Rosenkrantz AB, Hughes DR, Duszak R. The U.S. Radiologist Workforce:

an analysis of temporal and geographic variation by using large national

datasets. Radiology 2016; 279 (1): 175–84.

19. WHO. Global maps for diagnostic imaging. https://web.archive.org/web/

20200422195643/https://www.who.int/diagnostic_imaging/collabora-

tion/global_collab_maps/en/. Accessed January 24, 2021.

20. WHO. Global Atlas of Medical Devices. WHO; 2021. http://www.who.

int/medical_devices/publications/global_atlas_meddev2017/en/. Accessed

January 24, 2021.

21. The Complexities of Physician Supply and Demand: Projections from

2019 to 2034. AAMC. https://www.aamc.org/data-reports/workforce/

data/complexities-physician-supply-and-demand-projections-2019-2034.

Accessed January 24, 2021.

22. Data Labeling Pricing—Amazon SageMaker Ground Truth—Amazon

Web Services. Amazon Web Services, Inc. https://aws.amazon.com/sage-

maker/data-labeling/pricing/. Accessed January 24, 2021.

23. Culbertson N. Council post: the skyrocketing volume of healthcare data

makes privacy imperative. Forbes. https://www.forbes.com/sites/forbes-

techcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-

makes-privacy-imperative/.

24. Jercich K. The imaging AI field is exploding, but it carries unique chal-

lenges. Healthcare IT News. 2021. https://www.healthcareitnews.com/

news/imaging-ai-field-exploding-it-carries-unique-challenges. Accessed

January 24, 2021.

25. Olvera-L�opez J, Carrasco-Ochoa J, Mart�ınez-Trinidad JF, Kittler J.

A review of instance selection methods. Artif Intell Rev 2010; 34:

133–43.

26. Joshi A, Porikli F, Papanikolopoulos N. Multi-class active learning

for image classification. In: 2009 IEEE Conference on Computer Vision and

Pattern Recognition; 2009: 2372–9. doi:10.1109/CVPR.2009.5206627.

27. Hoyer L, Dai D, Wang Q, Chen Y, Van Gool L. Improving semi-

supervised and domain-adaptive semantic segmentation with self-

supervised depth estimation. arXiv E-prints, 2021. http://arxiv.org/abs/

2108.12545.

28. Mehta R, Shui C, Nichyporuk B, Arbel T. Information gain sampling for

active learning in medical image classification. arXiv E-prints, 2022.

http://arxiv.org/abs/2208.00974.

29. Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses

and treatable diseases by image-based deep learning. Cell 2018; 172 (5):

1122–31.e9.

30. Coates A, Ng A, Lee H. An analysis of single-layer networks in unsuper-

vised feature learning. In: proceedings of the fourteenth international con-

ference on artificial intelligence and statistics. JMLR workshop and

conference proceedings; 2011: 215–223.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 6 1089

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/6/1079/7111836 by H
arvard Law

 School Library user on 26 M
ay 2023

https://github.com/ArnaoutLabUCSF/cardioML
https://github.com/ArnaoutLabUCSF/cardioML
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://cs.stanford.edu/~acoates/stl10/
https://cs.stanford.edu/~acoates/stl10/
https://doi.org/10.1007/978-3-030-33128-3
https://doi.org/10.1038/nature21056
https://web.archive.org/web/20200422195643/https://www.who.int/diagnostic_imaging/collaboration/global_collab_maps/en/
https://web.archive.org/web/20200422195643/https://www.who.int/diagnostic_imaging/collaboration/global_collab_maps/en/
https://web.archive.org/web/20200422195643/https://www.who.int/diagnostic_imaging/collaboration/global_collab_maps/en/
http://www.who.int/medical_devices/publications/global_atlas_meddev2017/en/
http://www.who.int/medical_devices/publications/global_atlas_meddev2017/en/
https://www.aamc.org/data-reports/workforce/data/complexities-physician-supply-and-demand-projections-2019-2034
https://www.aamc.org/data-reports/workforce/data/complexities-physician-supply-and-demand-projections-2019-2034
https://aws.amazon.com/sagemaker/data-labeling/pricing/
https://aws.amazon.com/sagemaker/data-labeling/pricing/
https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-makes-privacy-imperative/
https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-makes-privacy-imperative/
https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-makes-privacy-imperative/
https://www.healthcareitnews.com/news/imaging-ai-field-exploding-it-carries-unique-challenges
https://www.healthcareitnews.com/news/imaging-ai-field-exploding-it-carries-unique-challenges
https://doi.org/10.1109/CVPR.2009.5206627
http://arxiv.org/abs/2108.12545
http://arxiv.org/abs/2108.12545
http://arxiv.org/abs/2208.00974


31. Burgess CP, et al. Understanding disentangling in b-VAE. arXiv E-prints,

2018. https://doi.org/10.48550/arXiv.1804.03599.

32. Leinster T. Entropy and diversity: the axiomatic approach. arXiv E-prints,

2020. https://doi.org/10.48550/arXiv.2012.02113

33. Jost L. What do we mean by diversity? The path towards quantification.
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